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Autocorrelation function of level velocities for ray-splitting billiards
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We study experimentally and theoretically the autocorrelation function of level velocifigs and the
generalized conductandg(0) for classically chaotic ray-splitting systems. Experimentally, a Sinai ray-
splitting billiard was simulated by a thin microwave rectangular cavity with a quarter-circle Teflon insert. For
the theoretical estimates of the autocorrelatpr) and the conductandg(0) we made parameter-dependent
guantum calculations of eigenenergies of an annular ray-splitting billiard. Our experimental and numerical
results are compared to theoretical predictions of systems based on the Gaussian orthogonal ensemble in
random matrix theory.

PACS numbes): 05.45—a

Many statistical properties of quantum spectra of systems=C(X)|x—, is interpreted as a generalized conductaj@le
which are classically chaotic can be interpreted in terms ofind depends on the statistical properties and geometry of the
random matrix theoryRMT). RMT, initiated by Wigner and  system[9,10].
mainly developed by Dysofl] and Mehta[2], considers In this paper we study experimentally and numerically the
ensembles of Hamiltonians and predicts universal statisticalutocorrelation functions of level velocitiefx) in a new
behavior of the corresponding quantal spectra. Recentlyslass of quantum systems—ray-splittitlS) billiards [16—
studies of universal properties of velocity autocorrelation21]. Ray splitting occurs in many fields of physics, whenever
functions of Hamiltonian systems that depend on a parameter wave length is small in comparison with the range over
X, such as a magnetic fie[@—9] or the shape of a billiard which a potential changes. Ideal model systems for the in-
[10], have attracted theoretical attenti@-10]. The velocity  vestigation of ray-splitting phenomena are ray-splitting bil-
autocorrelation function has also been studied for randoniards[18,20,21 and microwave cavities with dielectric in-

matrix dynamicqd11-14. serts [22,23. An important new aspect of the recent
The autocorrelator of the level velocities, originally intro- investigation of ray-splitting is that the underlying classical
duced by Yang and Burgdir [15], is given by mechanics in ray-splitting billiards is a non-Newtonian and
nondeterministic mechanid4.8,20. The signature of non-
C(X) Newtonian orbits has been found in the spectra of quantum
C(X):ml (D ray-splitting billiards [18,20,21,23 and in the spectra of

dielectric-loaded microwave cavitig®2,23. In this paper
we investigate the autocorrelator of the level velocity of the
annular ray-splitting billiard [21] numerically and the
Teflon-loaded Sinai microwave cavity experimentally.
Recent studies of non-RS systefirs10,25,26 show de-
viations ofc(x) from the GOE expectations. The aim of our
paper is to extend the investigation ofx) to ray splitting
systems in order to check whether the deviations persist.
The Sinai microwave cavity consists of a thin microwave
— cavity of dimension$1=0.8 cm(heighd, w=20 cm (width)
X=XVC(0). with a quarter-circle Teflon insert of radius=7 cm (see
) Fig. 2. It is well known that the electrodynamics of a thin
Szafer and Altshulef3] and Simons and Altshulgd]  microwave cavity can be described by the Helmholtz equa-
have shown that(x) is a universal function for all Hamil- tjgn [27], which is equivalent to the Schdimger equation in
tonians which are members of the Gaussian orthogonal en; two-dimensional quantum billiar28]. In [29,30 it was
depend on an external parameXerE; andA denote théth  the frequency spectrum of a dielectric-loaded microwave
eigenenergy of the Hamiltonian system and the mean levelayity is equivalent to the quantum spectrum of a corre-
spacing, respectively. The statistical averaging denoted byponding two-dimensional ray-splitting system. The cutoff
() can be carried out over the energy levE|sor/and over  frequency is given by, = c/(2hn), wherec is the speed of
a representative range of. The scaling paramete€(0) light andn is the index of refraction of the dielectric insert.
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FIG. 3. Annular RS billiard. The radii of the outer and the inner
circles areR=1 andr =0.5, respectively. The distance between the
centers of the circles is denoted By

T

w consists of a disc of radiua held at constant potential

from the annular billiard studied by Bohiga al. [32]. It

[ |
™ "1

=V, completely embedded in a circular domain of radius
FIG. 1. Sketch of the Sinai microwave cavity. The width of the R=1 held at constant potentid=0. The distance of the
cavity isw=20 cm and the lengthvaries betweeh =36.9 cmand  centers of the circles is denoted by with a>§. We con-
1;=39.2 cm. A quarter-circle Teflon insert£7 cm) with the sidered a particle of maga=1/2 inside the potential of the
same height as the cavity (0.8 cm) is inserted in the microwavennular ray-splitting billiard shown in Fig. 3 with Dirichlet
cavity. boundary conditions imposed on the outer circle. The quan-
tum dynamics of this system was solved numerically using
For a Teflon-loaded microwave cavity the index of refractionthe high accuracy method described in detail[21]. We
is n=1.44[31] and the cutoff frequency is,=13 GHz. chosefi=1, a=0.5, andnp=V,/E=1/2 and calculated the
To generate level dynamics one has to choose an appr(ﬁfSt 75 scaled states of negative parity for different values of
priate system parameter that can be controlled easily. Wé. This way we generated the level dynamics as a function of
have changed the lengthof the Sinai microwave cavity in the parametepb. The displacement parametérwas varied
the range froml;=36.9 cm tol;=39.2 cm in steps of from §=0.16 to5;=0.399 in steps of 0.001. A set of levels
0.05cm and measured resonance frequencigs ] of the annular ray-splitting billiard as a function of the pa-
=1, ...,364 as dunction of the parametelr for the fre- rameterd is shown in Fig. 4. As in the case of the Sinai
quency range from 0.5 GHz to 12 GHz. The cavity’s spectranicrowave cavity the level dynamics is irregular and shows
were measured using a frequency step of 0.4 MHz. Wwéevel repulsion.
checked that this step was small enough to resolve all of the To test the autocorrelator of the level velocities we chose
details of the spectra. The corresponding wave numbers ate” i and6— 6; as the external parametérfor the Sinai RS
kj(1)=2mv;(1)/c and the energies afij(')zkaﬂ)- A typi- microwave cavity and the annular ray-spl_ltt|r_19 _b||||ard, re-
cal set of energy levels of the Sinai microwave cavity as aSPectively. In order to calculatgx) for the Sinai microwave
function ofl is shown in Fig. 2, from which it is evident that Cavity, we used the levels;, j=101, ... 364, because the
the level dynamics is irregu|ar and shows level repu|sion_ first 100 levels show a nonuniversal behavior. The lowest of
The annular ray-splitting billiardsee Fig. 3 is derived the discarded levels display a very weak dependence on the
cavity lengthl. The remaining spectrum was divided into
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FIG. 2. Range of the spectrum of the Sinai RS billiard. The FIG. 4. Spectrum of the annular RS billiard for the eigenener-
spectrum was unfolded using the Weyl formula for the microwavegies E; ,i=45—75. The spectrum was unfolded using the Weyl
cavity including the discontinuity in the dielectric constah?,23). formula for the annular RS billiarf21].
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FIG. 5. Autocorrelation function of the level velocitie$x) of
the Sinai microwave cavitysquares and the annular RS billiard FIG. 6. Poincaresection of the electromagnetic ray dynamics
(circles in comparison with the theoretical prediction for GOE (zero wavelength limjtfor the Sinai RS cavity. Size of the cavity:
[10]. The inset shows the nearest-neighbor distribution for the Sinaividth = 20 cm, length= 37.4 cm, radius of the Teflon insert
RS cavity compared to GOE prediction. =7 cm. Coordinatesr, distance along the perimeter normalized to
the length of the perimeter; cag( the cosine of the bounce angie
three piecesieach piece containing 88 levelbecause it (see Fig. 2 in[19). The position of the Teflon insert along the
changes as a function of energy. Within each piece of th@erimeter of the Sinai RS cavity is marked with arrows.
spectrum the autocorrelatay,(x), n=1,2,3 was indepen- )
dently calculated and the mean vate(e) = %Eﬁzlcn(x) and Slnal -quartz block25] thg au.tocorrelatoc(x) shows -deV|a-
its error were estimated. In the calculation afix) for the ~ tonS in the downward direction aroumd-0.8. The discrep-

annular ray-splitting billiard we used 31 eigenenerdies ancy was explained by the non-GOE behavior of the experi-
i=45 75 andomitted the first 44 levels for the same mental data. Recently, measurements of the autocorrelator
reasons as given above. From a statistical point of view, thg(x). have been reportgd for a convent!or)al miqrowave Sinai
size of the numerical data set is large enough, because vity (rectangular cavity with a metallic insert in the shape
2409 velocitiesd ECO1/(dX) t lculate th ¢ of a quarter circlgand for the rectangular cavity with scat-
;Jeslztorc (x)vegz;!jlgatiogs)p])e(rforz‘neo d(}irctuhi gin:i I?QUSOC(;?/ri-ty terers[26]. Although the overall agreement between the ex-
(annular RS billiard showed that the generalized conduc- periment with the Sinai cavity and theory is goot(x)

) c(0) | toni K functi £ th " shows deviations in the upward direction for=0.3—0.9.
anceC( ) IS a nonmonotonic, weak function of the cavity e ype |ocal parameter variatigshift of one small scatterer
lengthl (displacement parameté). Therefore, in the calcu-

. S . . inside the rectangular cavity containing additionally 19 ran-
lation of c(x) the statistical averaging was carried out OVerdome distributed small scatterérghe deviation of the au-

the full range of the parametet, e.g., for the Sinai cavity tocorrelatorc(x) from RMT theory is much stronger than in
from X=1I, to X=1;. Figure 5 shows the autocorrelator of the case of the global parameter variati@yg., shift of a
the level velocitiesc(x) for the Sinai microwave cavity billiard wall) considered in our papdfFig. 4 in[26]). For
(squarepsand for the annular RS billiargtircles in compari-  small and large values of the autocorrelator of the level
son to the result predicted by RMT for GQtlll line) [10].  velocities for the Sinai RS microwave cavity is in good
For small values of, the experimental result and the nu- agreement with the predictions of RM{&ee Fig. 5, al-
merical result are in good agreement with the RMT predicthough for large values of there are small upward devia-
tions. For larger values of, both the experimental and the tions. In contrast to the nearest-neighbor distribution for the
numerical result show deviations from the predictions ofannular ray-splitting billiard, the nearest-neighbor distribu-
RMT, wherein the deviation of the result for the annulartion for the Sinai microwave cavity is close to Wigner’s sur-
ray-splitting billiard is larger. The deviation of the result for mise as shown by the inset in Fig. 5. The nearest-neighbor
the annular ray-splitting billiard may be explained by thedistribution for the RS Sinai billiard strongly suggests that
presence of regular regions in the phase-spaté In [21] the underlying ray dynamics of this system is chaotic. The
the existence of regular regions in the phase space of thoincaresection of the electromagnetic ray dynamizsro
annular ray-splitting billiard was also cited as a reason fomwavelength limii for the Sinai RS cavity is shown in Fig. 6.
the deviation of the nearest-neighbor spacing distributiorThis Poincaresection is generated by taking ray-splitting ef-
from a Wigner statistic. Nevertheless, the result obtained fofects into account. When the ray strikes one of the outer
the two-dimensional conformal billiafd.0] shows the same edges of the cavity it is specularly reflected. When it strikes
downward deviations from the result predicted by RMT, al-an interface between regions with different indices of refrac-
though it was shown that the two-dimensional conformal bil-tion it has a probabilityZ of being transmittedtransmitivity)
liard is fully chaotic[33]. The diamagnetic Kepler problem and a probabilityR of being reflectedreflectivity) [35]. We

[7] shows similar deviations in the downward direction, anduse a Monte Carlo approach in order to avoid the “daugh-
Simonset al.[7] explained this by the presence of quasiregu-ter” ray generation at each encounter with the RS interface
lar features of the spectrum for large valuexoflso for the  [16]. When the ray hits the interface, whether it is transmit-
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ted or reflected is chosen randomly, according to probabili- 160
ties7 andR. In this way only one ray is traced. The direc-
tion of the transmitted ray is given by Snell's law. Two 140
vertical stripes of regular motion are present in the Poincare 120 |
section. They correspond to the trajectories that skip along
the curved inside of the Teflon insert. Quantum mechanically E 100
they correspond to whispering gallery modéds]. Outside = 80
of the Teflon insert we see a sea of chaos with some small g
regular structures. The central structures are due to margin- © 607
ally stable bouncing ball orbits. The Poincaction shows 40
that the ray-splitting effects resulting in the appearance of
reflected and transmitted rays cause the ray dynamics of this 20
system to become almost completely chaotic. 0 ‘ ‘ ‘
On the basis of the discussion presented in this paper, we 0 100 200 300 400
conclude that the origin of the discrepancies between the N

predictions of RMT and calculations and measurements of

the aUtoqorrela‘_toc(x) for the CIaSSicaI_ly ChaOtiC qu_antum as a function of the energy level numi¢rThe full line is given by
systems investigated [ﬂ,1_0,25,2§ and in this paper is not o |aast squares fi€(0)=aN®, with a=26.8 m 2+6.3 m 2 and
yet fully understood and is possibly connected to some dep—1 47+0.10. The inset shows the scaling parameed) for the

gree of nonuniversality in the spectra of these systems.  annular RS billiard. The full line is given by the least squares fit:
Our experimental and numerical results also allow us tac(0)=aNP, with a=1.03+0.27 andb=1.38+0.15.

check the scaling properties of the paramé€téd) as a func- )

tion of the number of energy levelé Recently, Bruugt al.  liard yieldeda=1.03+0.27 andb=1.38+0.15. The expo-
[10] evaluated the scaling parame@{0) for the conformal ~nentb coincides with the value 3/2 within the error limits.
billiard (a GOE system Changing the shape of the confor- In summary, we me_asured and Calculateq the autocorrela-
mal billiard, they found a scaling with the energyaccord-  tOF Of the level velocitiesc(x) and the scaling parameter
ing to C(0)~E%2. Using the leading term in the Wey! for- C(0) for the Sinai microwave cavity and the annular ray-
mula[28] NzAE/.477 whereA is the area of the billiard. we splitting billiards. For the Sinai RS billiard we found good
obtain the reIationé(O)~N3’2. The scaling propertie:s of agreement of the estimateqx) with the GOE predictions.

C(0) for the RS billiards are analyzed based on the leadin For x>0.6 the correlatoc(x) calculated for the annular RS

Yilliard is below the GOE results. Thus, the main result of
term in the Weyl formula, which according {47,23 does our paper is that the deviations - érs'st for RS svs-
not depend on the RS phenomena. Figure 7 shows the p r paper | e at) persi 4

: o f6ms. This behavior may be linked to nonuniversal, quasi-
rameterC(0) as a function ofN for the Sinai microwave eqylar eigenenergies still present in the set of energies used
cavity. The parameteE(0) is averaged over 21 neighboring for calculating the autocorrelata(x). In both cases, how-

levels. We performed a least squares fit @i0) according  ever, we found that the scaling of the parame®0) is

to close to the predictio©(0)~ N2 obtained for non-RS bil-
liards [10]. Our results for the autocorrelatafx) and the
scaling paramete€(0) suggest that as far as the properties
of parametrically dependent eigenenergies of classically cha-
otic quantum systems are concerned, there is no essential

and obtaineda=26.8 m2+6.3 m2 and b=1.47+0.10,  difference between RS and non-RS systems.
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FIG. 7. Scaling parameteZ(0) for the Sinai microwave cavity

C(0)=aNP, 2
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