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Autocorrelation function of level velocities for ray-splitting billiards
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We study experimentally and theoretically the autocorrelation function of level velocitiesc(x) and the
generalized conductanceC(0) for classically chaotic ray-splitting systems. Experimentally, a Sinai ray-
splitting billiard was simulated by a thin microwave rectangular cavity with a quarter-circle Teflon insert. For
the theoretical estimates of the autocorrelatorc(x) and the conductanceC(0) we made parameter-dependent
quantum calculations of eigenenergies of an annular ray-splitting billiard. Our experimental and numerical
results are compared to theoretical predictions of systems based on the Gaussian orthogonal ensemble in
random matrix theory.
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Many statistical properties of quantum spectra of syste
which are classically chaotic can be interpreted in terms
random matrix theory~RMT!. RMT, initiated by Wigner and
mainly developed by Dyson@1# and Mehta@2#, considers
ensembles of Hamiltonians and predicts universal statis
behavior of the corresponding quantal spectra. Recen
studies of universal properties of velocity autocorrelat
functions of Hamiltonian systems that depend on a param
X, such as a magnetic field@3–9# or the shape of a billiard
@10#, have attracted theoretical attention@3–10#. The velocity
autocorrelation function has also been studied for rand
matrix dynamics@11–14#.

The autocorrelator of the level velocities, originally intr
duced by Yang and Burgdo¨rfer @15#, is given by

c~x!5
C~X!

C~0!
, ~1!

where

C~X!5
1

D2 F K dEi~X̄1X!

dX̄

dEi~X̄!

dX̄
L 2K dEi~X̄!

dX̄
L 2G

and

x5XAC~0!.

Szafer and Altshuler@3# and Simons and Altshuler@4#
have shown thatc(x) is a universal function for all Hamil-
tonians which are members of the Gaussian orthogonal
semble~GOE! or the Gaussian unitary ensemble and wh
depend on an external parameterX. Ei andD denote thei th
eigenenergy of the Hamiltonian system and the mean le
spacing, respectively. The statistical averaging denoted
^ & can be carried out over the energy levelsEi or/and over
a representative range ofX̄. The scaling parameterC(0)
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5C(X)uX50 is interpreted as a generalized conductance@4#
and depends on the statistical properties and geometry o
system@9,10#.

In this paper we study experimentally and numerically t
autocorrelation functions of level velocitiesc(x) in a new
class of quantum systems—ray-splitting~RS! billiards @16–
21#. Ray splitting occurs in many fields of physics, whenev
a wave length is small in comparison with the range o
which a potential changes. Ideal model systems for the
vestigation of ray-splitting phenomena are ray-splitting b
liards @18,20,21# and microwave cavities with dielectric in
serts @22,23#. An important new aspect of the rece
investigation of ray-splitting is that the underlying classic
mechanics in ray-splitting billiards is a non-Newtonian a
nondeterministic mechanics@18,20#. The signature of non-
Newtonian orbits has been found in the spectra of quan
ray-splitting billiards @18,20,21,24# and in the spectra o
dielectric-loaded microwave cavities@22,23#. In this paper
we investigate the autocorrelator of the level velocity of t
annular ray-splitting billiard @21# numerically and the
Teflon-loaded Sinai microwave cavity experimentally.

Recent studies of non-RS systems@7,10,25,26# show de-
viations ofc(x) from the GOE expectations. The aim of ou
paper is to extend the investigation ofc(x) to ray splitting
systems in order to check whether the deviations persist

The Sinai microwave cavity consists of a thin microwa
cavity of dimensionsh50.8 cm~height!, w520 cm~width!
with a quarter-circle Teflon insert of radiusr 57 cm ~see
Fig. 1!. It is well known that the electrodynamics of a th
microwave cavity can be described by the Helmholtz eq
tion @27#, which is equivalent to the Schro¨dinger equation in
a two-dimensional quantum billiard@28#. In @29,30# it was
shown that for frequenciesn less than a cutoff frequencync
the frequency spectrum of a dielectric-loaded microwa
cavity is equivalent to the quantum spectrum of a cor
sponding two-dimensional ray-splitting system. The cut
frequency is given bync5c/(2hn), wherec is the speed of
light andn is the index of refraction of the dielectric inser
366 ©2000 The American Physical Society
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For a Teflon-loaded microwave cavity the index of refracti
is n.1.44 @31# and the cutoff frequency isnc.13 GHz.

To generate level dynamics one has to choose an ap
priate system parameter that can be controlled easily.
have changed the lengthl of the Sinai microwave cavity in
the range from l i536.9 cm to l f539.2 cm in steps of
0.05 cm and measured resonance frequenciesn j , j
51, . . . ,364 as afunction of the parameterl for the fre-
quency range from 0.5 GHz to 12 GHz. The cavity’s spec
were measured using a frequency step of 0.4 MHz.
checked that this step was small enough to resolve all of
details of the spectra. The corresponding wave numbers
kj ( l )52pn j ( l )/c and the energies areEj ( l )5kj

2( l ). A typi-
cal set of energy levels of the Sinai microwave cavity a
function of l is shown in Fig. 2, from which it is evident tha
the level dynamics is irregular and shows level repulsion

The annular ray-splitting billiard~see Fig. 3! is derived

FIG. 1. Sketch of the Sinai microwave cavity. The width of t
cavity isw520 cm and the lengthl varies betweenl i536.9 cm and
l f539.2 cm. A quarter-circle Teflon insert (r 57 cm) with the
same height as the cavity (0.8 cm) is inserted in the microw
cavity.

FIG. 2. Range of the spectrum of the Sinai RS billiard. T
spectrum was unfolded using the Weyl formula for the microwa
cavity including the discontinuity in the dielectric constant@17,23#.
ro-
e

a
e
e
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from the annular billiard studied by Bohigaset al. @32#. It
consists of a disc of radiusa held at constant potentialV
5V0 completely embedded in a circular domain of radi
R51 held at constant potentialV50. The distance of the
centers of the circles is denoted byd, with a.d. We con-
sidered a particle of massm51/2 inside the potential of the
annular ray-splitting billiard shown in Fig. 3 with Dirichle
boundary conditions imposed on the outer circle. The qu
tum dynamics of this system was solved numerically us
the high accuracy method described in detail in@21#. We
chose\51, a50.5, andh5V0 /E51/2 and calculated the
first 75 scaled states of negative parity for different values
d. This way we generated the level dynamics as a function
the parameterd. The displacement parameterd was varied
from d i50.16 tod f50.399 in steps of 0.001. A set of leve
of the annular ray-splitting billiard as a function of the p
rameterd is shown in Fig. 4. As in the case of the Sin
microwave cavity the level dynamics is irregular and sho
level repulsion.

To test the autocorrelator of the level velocities we cho
l 2 l i andd2d i as the external parameterX for the Sinai RS
microwave cavity and the annular ray-splitting billiard, r
spectively. In order to calculatec(x) for the Sinai microwave
cavity, we used the levelsn j , j 5101, . . . ,364, because the
first 100 levels show a nonuniversal behavior. The lowes
the discarded levels display a very weak dependence on
cavity length l. The remaining spectrum was divided in

e

e

FIG. 3. Annular RS billiard. The radii of the outer and the inn
circles areR51 andr 50.5, respectively. The distance between t
centers of the circles is denoted byd.

FIG. 4. Spectrum of the annular RS billiard for the eigenen
gies Ei ,i 545275. The spectrum was unfolded using the We
formula for the annular RS billiard@21#.
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368 PRE 61Y. HLUSHCHUK et al.
three pieces~each piece containing 88 levels! because it
changes as a function of energy. Within each piece of
spectrum the autocorrelatorcn(x), n51,2,3 was indepen
dently calculated and the mean valuec(x)5 1

3 (n51
3 cn(x) and

its error were estimated. In the calculation ofc(x) for the
annular ray-splitting billiard we used 31 eigenenergiesEi ,
i 545, . . . ,75 andomitted the first 44 levels for the sam
reasons as given above. From a statistical point of view,
size of the numerical data set is large enough, because
use 7409 velocities@dE(X̄)#/(dX̄) to calculate the autocor
relatorc(x). Calculations performed for the Sinai RS cavi
~annular RS billiard! showed that the generalized condu
tanceC(0) is a nonmonotonic, weak function of the cavi
lengthl ~displacement parameterd). Therefore, in the calcu
lation of c(x) the statistical averaging was carried out ov
the full range of the parameterX̄, e.g., for the Sinai cavity
from X̄5 l i to X̄5 l f . Figure 5 shows the autocorrelator
the level velocitiesc(x) for the Sinai microwave cavity
~squares! and for the annular RS billiard~circles! in compari-
son to the result predicted by RMT for GOE~full line! @10#.
For small values ofx, the experimental result and the n
merical result are in good agreement with the RMT pred
tions. For larger values ofx, both the experimental and th
numerical result show deviations from the predictions
RMT, wherein the deviation of the result for the annu
ray-splitting billiard is larger. The deviation of the result fo
the annular ray-splitting billiard may be explained by t
presence of regular regions in the phase-space@21#. In @21#
the existence of regular regions in the phase space of
annular ray-splitting billiard was also cited as a reason
the deviation of the nearest-neighbor spacing distribut
from a Wigner statistic. Nevertheless, the result obtained
the two-dimensional conformal billiard@10# shows the same
downward deviations from the result predicted by RMT,
though it was shown that the two-dimensional conformal b
liard is fully chaotic@33#. The diamagnetic Kepler problem
@7# shows similar deviations in the downward direction, a
Simonset al. @7# explained this by the presence of quasireg
lar features of the spectrum for large values ofx. Also for the

FIG. 5. Autocorrelation function of the level velocitiesc(x) of
the Sinai microwave cavity~squares! and the annular RS billiard
~circles! in comparison with the theoretical prediction for GO
@10#. The inset shows the nearest-neighbor distribution for the S
RS cavity compared to GOE prediction.
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Sinai quartz block@25# the autocorrelatorc(x) shows devia-
tions in the downward direction aroundx50.8. The discrep-
ancy was explained by the non-GOE behavior of the exp
mental data. Recently, measurements of the autocorre
c(x) have been reported for a conventional microwave Si
cavity ~rectangular cavity with a metallic insert in the sha
of a quarter circle! and for the rectangular cavity with sca
terers@26#. Although the overall agreement between the e
periment with the Sinai cavity and theory is good,c(x)
shows deviations in the upward direction forx50.320.9.
For the local parameter variation~shift of one small scattere
inside the rectangular cavity containing additionally 19 ra
domly distributed small scatterers!, the deviation of the au-
tocorrelatorc(x) from RMT theory is much stronger than i
the case of the global parameter variation~e.g., shift of a
billiard wall! considered in our paper~Fig. 4 in @26#!. For
small and large values ofx the autocorrelator of the leve
velocities for the Sinai RS microwave cavity is in goo
agreement with the predictions of RMT~see Fig. 5!, al-
though for large values ofx there are small upward devia
tions. In contrast to the nearest-neighbor distribution for
annular ray-splitting billiard, the nearest-neighbor distrib
tion for the Sinai microwave cavity is close to Wigner’s su
mise as shown by the inset in Fig. 5. The nearest-neigh
distribution for the RS Sinai billiard strongly suggests th
the underlying ray dynamics of this system is chaotic. T
Poincare´ section of the electromagnetic ray dynamics~zero
wavelength limit! for the Sinai RS cavity is shown in Fig. 6
This Poincare´ section is generated by taking ray-splitting e
fects into account. When the ray strikes one of the ou
edges of the cavity it is specularly reflected. When it strik
an interface between regions with different indices of refr
tion it has a probabilityT of being transmitted~transmitivity!
and a probabilityR of being reflected~reflectivity! @35#. We
use a Monte Carlo approach in order to avoid the ‘‘daug
ter’’ ray generation at each encounter with the RS interfa
@16#. When the ray hits the interface, whether it is transm

ai

FIG. 6. Poincare´ section of the electromagnetic ray dynami
~zero wavelength limit! for the Sinai RS cavity. Size of the cavity
width 5 20 cm, length5 37.4 cm, radius of the Teflon insertr
57 cm. Coordinates:s, distance along the perimeter normalized
the length of the perimeter; cos(a), the cosine of the bounce anglea
~see Fig. 2 in@19#!. The position of the Teflon insert along th
perimeter of the Sinai RS cavity is marked with arrows.
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ted or reflected is chosen randomly, according to probab
ties T andR. In this way only one ray is traced. The dire
tion of the transmitted ray is given by Snell’s law. Tw
vertical stripes of regular motion are present in the Poinc´
section. They correspond to the trajectories that skip al
the curved inside of the Teflon insert. Quantum mechanic
they correspond to whispering gallery modes@18#. Outside
of the Teflon insert we see a sea of chaos with some s
regular structures. The central structures are due to mar
ally stable bouncing ball orbits. The Poincare´ section shows
that the ray-splitting effects resulting in the appearance
reflected and transmitted rays cause the ray dynamics of
system to become almost completely chaotic.

On the basis of the discussion presented in this paper
conclude that the origin of the discrepancies between
predictions of RMT and calculations and measurements
the autocorrelatorc(x) for the classically chaotic quantum
systems investigated in@7,10,25,26# and in this paper is no
yet fully understood and is possibly connected to some
gree of nonuniversality in the spectra of these systems.

Our experimental and numerical results also allow us
check the scaling properties of the parameterC(0) as a func-
tion of the number of energy levelsN. Recently, Bruuset al.
@10# evaluated the scaling parameterC(0) for the conformal
billiard ~a GOE system!. Changing the shape of the confo
mal billiard, they found a scaling with the energyE accord-
ing to C(0);E3/2. Using the leading term in the Weyl for
mula @28# N.AE/4p, whereA is the area of the billiard, we
obtain the relationC(0);N3/2. The scaling properties o
C(0) for the RS billiards are analyzed based on the lead
term in the Weyl formula, which according to@17,23# does
not depend on the RS phenomena. Figure 7 shows the
rameterC(0) as a function ofN for the Sinai microwave
cavity. The parameterC(0) is averaged over 21 neighborin
levels. We performed a least squares fit forC(0) according
to

C~0!5aNb, ~2!

and obtaineda526.8 m2266.3 m22 and b51.4760.10.
Although strong fluctuations are present inC(0), possibly
caused by the bouncing ball orbits of the Sinai billiard@34#,
the exponentb is very close to the value of 3/2 predicted f
non-RS billiards@10#.

The inset in Fig 7 shows the variation ofC(0) as a func-
tion of N for the annular RS billiard. In this case, too, th
parameterC(0) is averaged over 21 neighboring states.
least squares fit for the case of the annular ray-splitting
,
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liard yieldeda51.0360.27 andb51.3860.15. The expo-
nentb coincides with the value 3/2 within the error limits.

In summary, we measured and calculated the autocorr
tor of the level velocitiesc(x) and the scaling paramete
C(0) for the Sinai microwave cavity and the annular ra
splitting billiards. For the Sinai RS billiard we found goo
agreement of the estimatedc(x) with the GOE predictions.
For x.0.6 the correlatorc(x) calculated for the annular RS
billiard is below the GOE results. Thus, the main result
our paper is that the deviations inc(x) persist for RS sys-
tems. This behavior may be linked to nonuniversal, qua
regular eigenenergies still present in the set of energies u
for calculating the autocorrelatorc(x). In both cases, how-
ever, we found that the scaling of the parameterC(0) is
close to the predictionC(0);N3/2 obtained for non-RS bil-
liards @10#. Our results for the autocorrelatorc(x) and the
scaling parameterC(0) suggest that as far as the propert
of parametrically dependent eigenenergies of classically c
otic quantum systems are concerned, there is no esse
difference between RS and non-RS systems.
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FIG. 7. Scaling parameterC(0) for the Sinai microwave cavity
as a function of the energy level numberN. The full line is given by
the least squares fit:C(0)5aNb, with a526.8 m2266.3 m22 and
b51.4760.10. The inset shows the scaling parameterC(0) for the
annular RS billiard. The full line is given by the least squares
C(0)5aNb, with a51.0360.27 andb51.3860.15.
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